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This study aimed to develop a machine learning-based prediction model for the nautical area scattering coefficient
(NASC) of the Antarctic silverfish Pleuragramma antarcticum, a key species in the Southern Ocean. Acoustic survey
data from the Ross Sea from 2018 to 2023 were integrated with environmental variables, including depth, tempera-
ture, salinity, survey period, survey area, and grid location, to construct Random Forest regression models. Separate
models were trained on the adults and juveniles. For adults, continuous variables were standardized using z-scores.
Meanwhile, juvenile models were standardized using raw values. Model training was performed using MATLAB
TreeBagger with grid search optimization. The performance was evaluated by hold-out validation. The adult model

achieved high accuracy (

2~0.76, RMSE=2.10), with depth, temperature, and salinity identified as the most influen-

tial predictors. The juvenile model showed lower explanatory power (R?=0.38, RMSE~2.54), often underestimating
high NASC values. Adults are more strongly governed by physical conditions, whereas juveniles are influenced by
additional biological or ecological factors. Random Forest models can effectively predict adult silverfish NASC using
limited environmental inputs, supporting the improved interpretation of acoustic data and ecosystem-based manage-

ment in polar environments.
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Fig. 1. Conceptual diagram of random forest.
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Table 1. Descriptive statistics of environmental and acoustic vari-
ables used in the NASC prediction model for juvenile Antarctic
silverfish Pleuragramma antarcticum

Minimum Maximum Mean Standard deviation

Depth (m) 20.00 250.00 133.95 69.10
Latitude (°) -78.20 -66.51 -73.93 2.67
Longitude (°)  -175.00 179.98 124.24 116.18
Temperature (°)  -1.99 143 -1.16 0.78
Salinity (psu) 31.06 3478 34.47 0.30

NASC, Nautical area scattering coefficient. Variables include
sampling depth, temperature, salinity, and NASC integrated over
250 m depth (unit, m*nmi?)

Table 2. Predictor variables used in random forest models

Variable Unit Associated driver (s)
Depth m Aquatic (Vertical habitat)
Latitude, longitude °N, °E Spatial

Water temperature °C Aquatic

Water salinity psu Aquatic
(PEeanrcl);j/Mid/Late Summer) (factor) Seasonal

Area (CA/OL/RSP/TNBP) — (factor) Regional

NASC m? nmi? Response

CA, Cape adare; OL, Oates land; RSP, Ross Sea Polynya; TNBP,
Terra nova Bay Polynya; NASC, Nautical area scattering coeffi-
cient.
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Fig. 2. Effect of spatial grid resolution on random forest model
performance. a, Adult; b, Juvenile. Each line indicates RMSE
(blue, left y-axis) and R? (red, right y-axis) across different grid
sizes (0.1-0.3°).
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