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서   론

남극은암치(Pleuragramma antarcticum)는 남극 해양생태계
에서 가장 풍부하고 생태학적으로 중요한 중층성 어류로, 남극 
먹이사슬에서 다양한 상위 포식자들과의 먹이 관계를 통해 에
너지 전달 경로의 핵심을 이루는 종이다(Vacchi et al., 2004; 
Ainley and Siniff, 2009; Ainley et al., 2024). 특히 로스해를 
포함한 남극 대륙 주변 해역에서 대규모 군집을 이루며 서식하

고 있으며, 이들의 공간 분포와 자원량 변화를 정량적으로 파
악하는 것은 생태계 구조 및 기후변화에 따른 반응을 이해하
는 데 필수적이다. 해양생물의 분포를 추정하기 위해 수중음향
기법이 널리 활용되고 있으며, NASC (nautical area scattering 
coefficient)는 상대적 개체군 밀도 및 분포 패턴을 정량화하는 
핵심 지표로 사용된다. 하지만 NASC는 음향반사강도를 기반
으로 한 지표로, 실제 어류의 분포와 밀도를 결정짓는 수온, 염
분, 해류 등의 해양환경 요인을 직접적으로 반영하지 않기 때문
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This study aimed to develop a machine learning-based prediction model for the nautical area scattering coefficient 
(NASC) of the Antarctic silverfish Pleuragramma antarcticum, a key species in the Southern Ocean. Acoustic survey 
data from the Ross Sea from 2018 to 2023 were integrated with environmental variables, including depth, tempera-
ture, salinity, survey period, survey area, and grid location, to construct Random Forest regression models. Separate 
models were trained on the adults and juveniles. For adults, continuous variables were standardized using z-scores. 
Meanwhile, juvenile models were standardized using raw values. Model training was performed using MATLAB 
TreeBagger with grid search optimization. The performance was evaluated by hold-out validation. The adult model 
achieved high accuracy (R²≈0.76, RMSE≈2.10), with depth, temperature, and salinity identified as the most influen-
tial predictors. The juvenile model showed lower explanatory power (R²≈0.38, RMSE≈2.54), often underestimating 
high NASC values. Adults are more strongly governed by physical conditions, whereas juveniles are influenced by 
additional biological or ecological factors. Random Forest models can effectively predict adult silverfish NASC using 
limited environmental inputs, supporting the improved interpretation of acoustic data and ecosystem-based manage-
ment in polar environments.
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에, 단독으로는 생태적 해석에 한계가 존재한다. 즉, NASC 자
체는 어류의 분포를 정량화하는 데 유용하지만, 어류의 분포와 
개체군 동태는 환경 변화에 민감하게 반응하기 때문에, 이러한 
환경 변수를 통합적으로 고려할 때 음향자료의 해석 정확도뿐
만 아니라 생태학적 해석력 또한 크게 향상될 수 있다. 최근에는 
NASC와 환경 변수 간과 같은 복잡한 상호작용과 비선형적 관
계를 정량적으로 모델링하기 위해 머신러닝(machine learning) 
기법이 다양한 연구에 도입되고 있다(Woo et al., 2018; Islam 
et al., 2021). 그 가운데 랜덤포레스트(random forest)는 높은 예
측 정확도와 변수 간 관계 파악 능력으로 주목받고 있다. 랜덤포
레스트는 Breiman (2001)이 제안한 앙상블 학습 방법으로, 다
수의 결정트리를 통합하여 예측 성능을 향상시킨 기법이다. 각 
트리는 원본 데이터로부터 복원 추출(bootstrap sampling)된 데
이터셋을 이용하여 개별적으로 학습되며, 이 과정을 배깅(bag-
ging)이라 한다. 학습된 다수의 트리들은 CART (classification 
and regression) 방법을 토대로 구현되며 회귀문제에서는 평균
값을, 분류 문제에서는 다수결 투표를 통해 최종 예측값을 산
출한다(Fig. 1). 따라서 본 연구에서는 2018년부터 2023년까지 
로스해에서 수행된 음향 조사 자료를 기반으로, 수심, 수온, 염
분과 같은 환경 변수 및 조사 시기, 조사 해역 정보를 설명 변수
로 활용하여 남극은암치의 NASC 값을 예측하는 랜덤포레스
트 회귀 모델을 구축하였다. 이를 통해 제한된 환경 변수 조건
에서의 예측 정확도를 평균제곱근오차(root mean square error, 
RMSE), 평균절대오차(mean absolute error, MAE), 결정계수
(coefficient of determination, R²), OOB (out-of-bag) error 등
의 성능 지표를 통해 평가하였으며, 변수 중요도 분석을 통해 남
극은암치의 분포를 지배하는 주요 환경 요인을 도출하고자 한

다. 또한 성어와 치어를 대상으로 각각 구축된 모델의 예측 성능
과 오차를 비교함으로써, 생애 단계에 따라 NASC 변동에 대한 
환경 변수의 영향이 다르게 나타나는 경향을 확인하였다. 

재료 및 방법 

조사해역 및 음향·환경자료

조사해역은 남극 로스해 대륙붕(74–76°S, 165–175°E)과 로
스 해구(76–78°S, 170–178°E)로 설정하였다. 2018년부터 
2023년까지 과학어군탐지기 EK 60, EK 80 (Simrad; Kongs-
berg Maritime AS, Horten, Norway)를 이용하여 연속 음향 조
사를 수행하였다. 수집된 음향자료는 Echoview 12 (version 
12; Echoview Software Pty. Ltd., Hobart, Australia)를 이용
해 time varied threshold (TVT) 방법으로 배경 잡음을 제거하
고, Impulse 및 Electrical Noise 필터를 적용하였다. 이후 주
파수별 평균체적후방산란강도(mean volume backscattering 
strength, MVBS)를 산출한 뒤, 주파수차(△MVBS=MVBS200-
MVBS120)를 이용하여 남극은암치의 신호를 분리하였다. 
남극은암치 성어는 -1.42≤△MVBS200-120≤0.60 dB, 치어는 
-1.22≤△MVBS200-120≤0.74 dB 범위를 적용하였다. 식별된 남
극은암치의 신호를 1 nmi 수평 간격, 10 m 수직 셀 단위로 적
분하여 NASC (m2/nmi2)로 변환하였다. 유사한 시점에 투하
한 SBE 911plus CTD (Sea-Bird Electronics, Bellevue, WA, 
USA) 프로파일로부터 수온(°C) 및 염분(psu)을 추출하였으며, 
위도·경도는 GPS로 기록하였다. 수집된 자료에 대해 이상치와 
결측치를 사전 처리하였다. 결측치는 CTD 프로파일 미기록, 
GPS 오류, 강한 잡음으로 인한 NASC 산출 불가 등에서 발생

Fig. 1. Conceptual diagram of random forest.
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하였다. 

학습모델파라미터 설정

본 연구에서는 성어와 치어 자료를 구분하여 각각 랜덤포레스
트 회귀 모델을 구축하였다. 전체 1,186개의 원시 샘플 중 이상
치 및 결측치 판정 결과, 성어 모델과 치어 모델에는 1,064개의 
유효 샘플이 최종 활용되었으며, 유효 샘플에 대한 변수별 기초 
통계량은 다음과 같다(Table 1). 종속 변수는 NASC로, 분포의 
왜도를 완화하기 위해 로그 변환 [log(NASC+1)]을 적용하였
다. 설명 변수로는 수심, 수온, 염분, 조사 시기(period), 조사 해
역(area), 격자 위치(GridID)를 포함하였다(Table 2).
성어 모델의 경우, 수심·수온·염분은 평균과 표준편차를 이용
한 z-스코어 정규화를 적용하여 단위 차이를 보정하고 변수 중
요도의 일관성을 확보하였다. 반면 치어 모델은 수온 등 물리
적 변수의 절대값이 생태적 의미를 가지므로 정규화를 하지 않
았다. 위·경도 좌표는 공간 변이를 반영하기 위해 격자 단위로 
이산화하여 GridID를 생성하였으며, 조사 시기(early Summer, 
Summer, late Summer)와 해역(Cape adare, CA; Oates Land, 
OL; Ross Sea Polynya, RSP; Terra nova Bay Polynya, TNBP)
은 범주형 변수로 인코딩하였다.

모델 학습은 MATLAB의 TreeBagger 함수를 사용하였으며, 
부트스트랩 샘플링을 기본값으로 활성화하여 각 트리별 데이터
셋을 복원추출 방식으로 구성하였다. 각 결정트리는 데이터 특
성에 기반하여 최대 분할 수(maximum number of splits)가 자
동으로 결정되도록 설정하였으며, 최소 말단 노드 크기(mini-
mum leaf size)를 5로 제한함으로써 과도한 분할에 따른 과적합
을 방지하였다. 클래스 균형 옵션은 회귀 모델 특성상 적용되지 
않았으며, 하이퍼파라미터는 그리드 서치(grid search) 기법으
로 검증하였다(Scowen et al., 2021). 최종 모델은 6개 설명 변
수와 1개 종속 변수(NASC)로 구성되었으며, 성어와 치어 모델
은 각각 0.10° 및 0.15° 공간 해상도로 집계되었다. 각 격자 셀의 
남서 모서리 좌표를 문자열로 결합하여 생성한 GridID는 범주
형 설명 변수로 활용하였다.

랜덤포레스트

본 연구에서는 남극은암치의 NASC값을 예측하기 위하여 수
심, 수온, 염분 등의 환경 변수와 조사 시기 및 조사해역 정보를 
설명 변수로 사용하는 랜덤 포레스트 회귀모델을 구축하였다. 
모델 입력은 각 측정 시점의 공간 좌표에 해당하는 격자 단위로 
구성되었으며, 이를 기반으로 조사 시점의 NASC 값을 추정하
였다. 예측 모델은 다음 식 (1)과 같은 구조로 표현할 수 있다.

Predicted NASC(x,y)=Model(D,T,S,P,A,G)……… (1)

설명 변수는 수심(D), 수온(T), 염분(S), 조사시기(P), 조사해
역(A), 격자위치(Grid ID) 다섯 개이며, 종속 변수는 NASC이
다. 왜도와 과첨도를 완화하기 위해 다음 식 (2)와 같이 변환하
여 학습하였다.

y=log(NASC+1) ……………………(2)

연속형 변수(수심, 수온, 염분)는 훈련 자료의 평균 μ와 표준
편차 σ를 이용하여 식 (3)과 같이 z-score 표준화하였다. 여기서 
Xi는 i번째 관측값을 의미하며, μX와 σX는 각각 변수 X의 훈련 
자료 평균과 표준편차를 나타낸다. 따라서 Xz,i는 정규화 과정을 
거친 i번째 표준화 값으로, 변수 간 단위 차이를 보정하고 모델 
입력 시 일관성을 확보하기 위해 사용되었다. 

Xz,i=  
Xi-μX

……………………(3)σX

모델의 일반화 성능을 신뢰성 있게 평가하기 위해, 훈련 데이
터에서 설정된 전처리 및 파라미터를 테스트 데이터에 동일하
게 적용하였다(Regier et al., 2023). 사전 실험에서 치어 자료
는 연속 변수의 Z-score 표준화 시 설명력이 크게 감소하여, 최
종 모델에서는 치어는 원 단위, 성어는 Z-score 표준화를 적용
하였다. 
격자 해상도 설정은 사전 실험을 통해 모델 성능과 표본 수 

Table 1. Descriptive statistics of environmental and acoustic vari-
ables used in the NASC prediction model for juvenile Antarctic 
silverfish Pleuragramma antarcticum 

Minimum Maximum Mean Standard deviation
Depth (m) 20.00 250.00 133.95 69.10
Latitude (°) -78.20 -66.51 -73.93 2.67
Longitude (°) -175.00 179.98 124.24 116.18
Temperature (°) -1.99 1.43 -1.16 0.78
Salinity (psu) 31.06 34.78 34.47 0.30
NASC, Nautical area scattering coefficient. Variables include 
sampling depth, temperature, salinity, and NASC integrated over 
250 m depth (unit, m²/nmi²)

Table 2. Predictor variables used in random forest models

Variable Unit Associated driver (s)
Depth m Aquatic (Vertical habitat)
Latitude, longitude °N, °E Spatial
Water temperature °C Aquatic
Water salinity psu Aquatic
Period 
(Early/Mid/Late Summer) — (factor) Seasonal

Area (CA/OL/RSP/TNBP) — (factor) Regional
NASC m2 nmi-2 Response
CA, Cape adare; OL, Oates land; RSP, Ross Sea Polynya; TNBP, 
Terra nova Bay Polynya; NASC, Nautical area scattering coeffi-
cient.
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간 균형을 고려하여 최적화하였다. 성어 모델은 0.10° 해상도에
서 RMSE=2.09, R2=0.71로 가장 높은 예측력을 보였으며, 치
어 모델은 0.15° 격자에서 R2=0.61로 가장 우수한 설명력을 나
타냈다. 이에 따라 각 모델에 해당 해상도를 최종 적용하였다.
또한, 특정 변수가 집중 학습되는 것을 방지하기 위해, 의사결
정트리의 노드를 분할할 때 총 q개의 독립 변수 중 매번 새로 선
택된 m개의 독립 변수가 노드 분할 시 고려 대상이 된다. 이때 
변수의 개수 m은 일반적으로 m≈√q또는 m≈log2 q로 결정된다. 
랜덤포레스트 회귀 학습 시, 총 B개의 부트스트랩 샘플 집합으
로부터 생성된 개별 트리 Tb는 각각의 입력값 x에 대해 예측값 
Tb(x)을 산출한다(Lee and Lee, 2020). 이들 트리의 예측값을 
평균하여 최종 예측값을 다음과 같이 결정한다(식 4).

f̂(x)=  
1 B

……… (4)∑ Tb(x)B
b=1

본 연구에서는 NASC 값의 분포 왜도를 완화하고 정규성을 
확보하기 위해 로그 변환 log(NASC+1)을 적용하였으며, 예
측 결과는 다음과 같은 역변환을 통해 실제 단위(m2/nmi2)의 
NASC 값으로 복원하였다.

NASĈ =exp(f̂(x))-1 ……………… (5)

모델검증

본 연구에서는 전체 데이터를 학습용과 평가용으로 8:2 비율
로 고정 분할하여 모델 성능을 평가하는 hold-out 방식(hold-
out validation)을 사용하였다. 이는 일반적인 교차검증 방식에 
비해 계산 부담이 적고 구현이 간단하며, 전체 데이터의 양이 
비교적 충분한 본 연구 조건에서 적절한 방법으로 판단되었다. 
학습은 80%의 데이터를 기반으로 수행하였으며, 나머지 

20%는 독립된 테스트 세트로 활용하여MAE, RMSE, 정규화 
RMSE (normalized RMSE, NRMSE), R2를 산출하였다. 또한, 
랜덤포레스트(random forest) 회귀 모델의 내부 일반화 성능을 
추정하기 위해 out-of-bag 기반 평균제곱오차(OOB-MSE) 및 
평균제곱근오차(OOB-RMSE)를 병행하여 산출하였다. 

결   과

관측자료

전체 NASC 값은 치어에서 0.00–41.33 (m2/nmi2), 성어에서 
0.00–222.53 (m2/nmi2)로 분포하였으며, 중앙값은 각각 0.018, 
0.038 (m2/nmi2)로 나타났다. 평균값은 치어에서 0.90, 성어에
서 1.91 (m2/nmi2)로 성어에서 더 높은 경향을 보였다. 로그 변
환 [log(NASC+1)] 결과, 중앙값은 치어 0.008, 성어 0.016으로 
산출되었으며, 평균값은 각각 0.279, 0.464로 계산되어 데이터
의 분산이 현저히 감소하였다.

매개변수 최적화

치어 모델의 경우, 수심·수온·염분 변수에 대해 정규화를 적
용한 결과 RMSE는 2.50에서 2.64로 증가하고, 결정계수 R2

는 0.39에서 0.34로 감소하는 등 예측 성능이 저하되었다. 이
에 따라 치어 모델에는 정규화를 적용하지 않고 단위를 그대로 
유지하였다. 또한, 본 연구에서는 공간 해상도 설정에 따른 예
측 성능의 영향을 평가하기 위해, 0.1°, 0.2°, 0.25°의 격자 단위
를 대상으로 사전 실험을 수행하였다. 그 결과, 치어 모델에서
는 0.15° 격자 해상도에서 가장 우수한 예측 성능(RMSE=1.38, 
R2=0.72)을 보여, 해당 해상도가 최적으로 판단되었다. 반면, 
성어 모델의 경우 0.10° 격자 단위에서 RMSE=2.01, R²=0.78
로 예측력이 가장 높아, 보다 세밀한 공간 구분이 성어 분포 예
측에 유리한 것으로 나타났다(Fig. 2).
하이퍼파라미터 검증에는 그리드 서치(grid search) 기법을 
적용하였다. 탐색 대상 파라미터는 트리 개수(nTrees)를 100, 

Fig. 2. Effect of spatial grid resolution on random forest model 
performance. a, Adult; b, Juvenile. Each line indicates RMSE 
(blue, left y-axis) and R² (red, right y-axis) across different grid 
sizes (0.1–0.3°).
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200, 400, 600, 800으로 분할 시 샘플링할 변수 수(mtry) 2, 3, 4, 
5로 설정하였으며, 모델 학습의 재현성과 결과 일관성을 확보
하기 위해 난수 생성기의 초기값을 고정하였다(Fig. 3). 데이터 
분할은 한 번만 수행하여 전체 데이터의 80%를 학습용, 20%를 
테스트용으로 고정하였고, 모든 하이퍼파라미터 조합 평가 및 
최종 모델 검증에 동일한 학습·테스트 분할을 재사용함으로써, 
모델 성능 비교 시 분할에 따른 변동성을 완전히 배제하였다.
각 조합별로 테스트 세트에 대한 RMSE를 계산한 결과, 성어 
모델은 nTrees=800, mtry=5에서 2.03 m²/nmi²의 최저 RMSE
를, 치어 모델은 nTrees=100, mtry=5에서 2.51 m2/nmi2의 최저 
RMSE를 기록하였다. 이후, 선정된 최적 파라미터를 이용해 동
일한 데이터 분할(학습 80%, 테스트 20%) 조건에서 모델을 재
학습(retraining)하였으며, 재학습 결과의 RMSE 및 R2 값은 그
리드 서치 단계에서의 최저 RMSE 결과와 완전히 일치하였다.

모델적용

로그 변환된 NASC와 환경변수 간의 선형 관계를 파악하기 
위하여 Pearson 상관계수 기반의 상관관계 분석을 수행하였다. 

성어와 치어 모델 모두에서 수심은 log(NASC+1)과 가장 뚜렷
한 음의 상관관계를 나타냈으며, 이는 수심 증가에 따라 남극은
암치의 음향산란신호가 감소하는 경향을 시사한다. 수온과 염
분 역시 NASC와 음의 상관성을 보였으나, 그 절댓값은 각각 
-0.19– -0.13 수준으로 상대적으로 약하였다. 이 결과는 개별 변
수 단독으로는 NASC의 분포를 충분히 설명하기 어렵다는 점
을 암시하며, 비선형적 상호작용을 포함하는 머신러닝 기반 분
석의 필요성을 뒷받침한다. 한편, 환경 변수 간 상호 상관성은 
전반적으로 낮은 수준을 유지하였으며, 설명 변수 간 다중공선
성의 위험은 제한적인 것으로 판단된다.

OOB 기반 변수 중요도 분석 결과(Fig. 4), 성어 모델에서는 
수심(z), 수온(z), 염분(z)이 전체 설명력의 75% 이상을 차지하
는 핵심 변수로 도출되었다. 이들 세 변수는 수치적 환경(물리 
수괴 조건)과 직접적으로 연관되어 있어, 남극은암치 성어의 분
포가 해양 물리 환경의 영향을 강하게 받는다는 점을 시사한다. 
특히 수심(z)은 약 단일 변수 중 가장 높은 상대 중요도를 기록
하였다. 치어 모델의 경우에도 동일한 세 연속형 변수가 주요한 
예측 기여를 하였으나, 전반적으로 변수 간 기여도 분포는 보다 
균일한 양상을 보였다.
반면, 조사 시기(period), 조사해역(area), 격자 위치(GridID)
와 같은 범주형 변수는 성어 및 치어 모델 모두에서 상대적으로 
낮은 중요도를 나타냈으며, 이는 시·공간적 차이보다는 수심·
수괴 구조 등의 물리적 요인이 남극은암치 NASC의 주요 결정 
요인임을 의미한다.

모델성능

최적화된 하이퍼파라미터(nTrees=800, mtry=5)를 적용한 성
어(adult) 모델의 학습 및 예측 성능은 Fig. 5a에 제시된 OOB-
MSE 곡선을 통해 확인할 수 있다. 트리 수 증가에 따라 OOB 

Fig. 4. Relative importance of predictor variables in the random 
forest models for adult and juvenile Antarctic silverfish Pleura-
gramma antarcticum.

Fig. 3. RMSE variation according to the number of trees and mtry 
values in the random forest model for adult (a) and juvenile (b) 
Antarctic silverfish Pleuragramma antarcticum.
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오차는 급격히 감소하였고, 약 100개 이상의 트리 이후에는 안
정적으로 수렴하는 양상을 보여 학습 안정성과 과적합 방지 효
과가 충분히 확보되었음을 시사한다. 테스트 세트에서의 예측 
성능은 MAE=0.70, RMSE=2.09, NRMSE=0.07, R2=0.76로 
나타났으며, 이는 전체 NASC 분산의 약 77%를 설명할 수 있는 
수준으로 매우 우수한 예측력을 갖춘 것으로 평가된다. 
동일 모델의 OOB 기반 내부 검증 결과는 MSE=69.19, 

RMSE=8.31로 산출되었으며, 이는 로그 스케일에서 학습된 예
측값을 지수 역변환하는 과정에서의 스케일 차이와, 부트스트

랩 샘플 분할 방식의 차이에서 기인한 것으로 해석된다. 그럼에
도 불구하고 전반적인 예측 정확도와 일반화 성능은 안정적인 
수준을 유지하였다. 반면, 치어(Juvenile) 모델은 nTrees=100, 
mtry=5로 최적화되었으며, OOB-MSE 곡선(Fig. 5b)에서도 
100개 미만의 트리 수에서 빠르게 수렴하는 양상을 보여 비교
적 단순한 구조로도 모델이 안정화되었음을 보여준다. 테스트 
세트 기준 성능은 MAE=0.61, RMSE=2.54, NRMSE=0.09, 
R2=0.37로 나타나, 전체 NASC 분산의 약 39%만을 설명하는 
수준에 머물렀다. 그러나 OOB 기반 검증에서는 MSE=4.36, 
RMSE=2.09으로 외부 테스트 세트보다 낮은 오차를 보여 일정 
수준의 일반화 성능은 유지된 것으로 분석된다.
예측값과 관측값 간의 관계를 시각화한 Fig. 6에 따르면, 성
어 모델(Fig. 6a)은 대부분의 예측값이 1:1 대각선 부근에 분포
하며 전반적으로 높은 적합도를 보였다. 이에 반해, 치어 모델
(Fig. 6b)은 NASC가 증가함에 따라 예측값이 점차 과소 추정되
는 경향이 나타났다. Fig. 7에 제시된 잔차 분포는 각 모델의 예
측 안정성과 잠재적 한계를 잘 보여준다. 성어 모델(Fig. 7a)의 
잔차는 대부분 -2에서 +2 사이에 집중되어 있으며, 분포 형태는 
전반적으로 대칭적이고 중앙값이 0에 근접하여 예측 오차가 안
정적인 특성을 보였다. 그러나 잔차의 평균값은 0이지만 분포
가 왼쪽으로 다소 치우쳐 있는 비대칭성이 관찰되어, 잔차 정규
성 가정에는 일정 수준의 한계가 존재함을 시사한다. 이에 따라 
해석 시에는 오차의 정규분포 가정에 기반한 통계적 신뢰도 추
정에 유의가 필요하다.
반면, 치어 모델(Fig. 7b)은 -5 이하의 음의 잔차가 빈번히 발
생하고 있으며, 전체적으로 잔차의 분포가 좌측으로 성어 모델
에 비하여 왜도되어 있다. 이는 높은 NASC 값을 가진 샘플에

Fig. 5. Out-of-Bag mean squared error (OOB-MSE) curves by the 
number of trees in the random forest model for adult and juvenile 
Antarctic silverfish Pleuragramma antarcticum.

Fig. 6. Scatter plots comparing predicted and observed NASC val-
ues for adult (a) and juvenile (b) Antarctic silverfish Pleuragramma 
antarcticum. NASC, Nautical area scattering coefficient.

Fig. 7. Histogram of residuals (Predicted - Observed) for adult (a) 
and juvenile (b) Antarctic silverfish Pleuragramma antarcticum 
NASC prediction models. NASC, Nautical area scattering coef-
ficient.
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서 예측이 과소 추정되는 경향을 반영하며, 모델이 이상값 또는 
높은 NASC 값에 대해 과도한 민감도 또는 예측력 저하를 보임
을 의미한다. 이로 인해 예측 오차의 정규성 및 등분산성 가정
이 크게 위배되며, 전체 모델 안정성 측면에서도 불확실성이 더 
클 수 있다.
결론적으로, 성어 모델은 전반적으로 안정적인 예측 성능과 
일반화 오차 수준을 확보하여, 환경 변수 기반 NASC 예측에 
있어 효과적인 접근임을 입증하였다. 반면, 치어 모델은 예측 
성능이 상대적으로 제한적이었으며, 향후 모델 개선을 위해서
는 생물학적 변수의 추가 확보, 이상치 제거 등의 보완이 필요
할 것으로 판단된다.

고   찰 

본 연구에서는 수심, 수온, 염분 등 주요 물리적 환경변수와 조
사 시기 및 해역 정보를 기반으로 남극은암치(P. antarcticum)
의 음향산란 지표인 NASC를 예측하기 위한 랜덤포레스트
(random forest) 회귀 모델을 구축하였다. 예측 성능 평가 결
과, 성어 모델은 R2=0.70, RMSE=2.09로 높은 설명력을 보였
으며, 변수 중요도 분석에서도 수심(z), 수온(z), 염분(z)이 주요
한 기여도를 나타냈다. 이러한 결과는 남극은암치 성어의 분포
가 해양의 물리적 요인, 특히 수심대 및 수괴 구조에 의해 강하
게 지배된다는 점을 시사한다(O’Driscoll et al., 2011). Sun et 
al. (2020) 역시 해역은 다르지만 랜덤포레스트 기반 NASC 예
측에서 수온과 수심이 가장 중요한 변수로 작용함을 보고하였
으며, 이는 본 연구의 결과와 일치한다. 다만 본 연구의 로스해 
자료에서는 상층 수온의 변화 폭이 상대적으로 제한적이며, 해
빙 형성 및 수괴 구조에 의해 염분의 분포 패턴이 더 뚜렷하게 
나타나 염분과 수심의 기여도가 높게 평가되었다. 또한 잔차 분
포가 ±2 범위 내에 집중되어 있어 모델의 안정성과 신뢰성이 
높았으며, 물리 환경만으로도 성어 분포의 주요 변동성을 충분
히 설명할 수 있음을 보여준다. 이는 성어가 일정한 환경 범위 
내에서 군집하며, 물리적 서식 조건의 변화에 민감하게 반응하
는 종의 특성과 부합한다.
반면 치어 모델은 R2=0.61, RMSE=2.54로 상대적으로 낮은 
예측력을 보였다. 이는 치어의 분포가 물리적 변수보다 생물학
적·생태적 요인의 영향을 더 크게 받기 때문으로 해석된다. 남
극은암치 치어는 해빙 가장자리나 폴리냐(polynya), 해빙 하부
와 같은 미세한 환경 요인에 따라 서식 밀도가 달라지며, 이 해
역은 먹이생물의 분포와 해빙 구조 변화에 따라 시공간적으로 
크게 변동한다(Corso et al., 2022; Lee et al., 2024). 또한 치어
는 포식 회피 행동이나 해류에 의한 확산 등 행동적 요인으로 인
해 국지적 환경 요인에 대한 의존도가 낮은 경향을 보였으며, 이
러한 특성은 단순한 수심·수온·염분 변수로는 포착하기 어렵다. 
실제로 본 연구의 치어 모델에서는 높은 NASC 구간에서 과소
추정 경향이 나타났고, 잔차 분포에서도 -5 이하의 음의 잔차가 
빈번히 관측되었다. 이는 치어 분포의 높은 변동성과 미세환경 

의존성을 반영하며, 물리적 변수 중심의 모델링 접근만으로는 
예측의 한계가 있음을 보여준다. 이러한 결과는 기존 선행연구
들과도 일치한다. Sun et al. (2020)은 랜덤포레스트 기반 예측 
모델을 통해 표층 수온이 NASC 변화의 주요 설명 변수로 작용
하며, 수심대별로 예측력에 영향을 주는 요인이 상이하다고 보
고하였다. 또한, Gadeken et al. (2021)은 캘리포니아 해류계에
서 위성 기반 표층 환경 변수만으로는 NASC의 절대값을 정확
히 예측하기 어렵다고 지적하였으며, 본 연구의 치어 모델에서
도 유사한 과소추정 경향 및 모델 불안정성이 관찰되었다.
한편, 모델을 시기별 및 해역별로 분리 적용한 결과, 일부 구간
에서는 전체 모델보다 더 높은 예측 성능을 나타냈다. 특정 조
사 정선에서는 치어 모델의 R2가 0.80 이상으로 상승하였고, 성
어 모델 역시 10C 해역에서 R2=0.79 이상을 기록하며 RMSE 
수준도 낮게 나타났다. 이는 일부 시기나 공간에서는 특정 환경 
요인이 국지적으로 강하게 작용하여 예측 정확도가 크게 향상
될 수 있음을 보여준다. 해역별 분석 결과에서는 RSP 및 TNBP 
해역에서 성어와 치어 모두 비교적 안정적인 예측 성능을 보였
지만, OL 해역에서는 설명력이 음수(R2<0)로 나타나는 등 지역 
간 예측 정확도의 편차가 존재하였다. 이는 NASC 예측에서 지
역별 생태 특성과 환경 이질성을 반영한 공간 맞춤형 모델링의 
필요성을 시사한다.
해양생물 분포 예측에 머신러닝 기법을 적용하는 연구는 최
근 들어 다양한 해양 생태계에서 확산되고 있다. 랜덤포레스트
는 변수 간 비선형성과 다중공선성 문제를 효과적으로 처리할 
수 있어 특히 주목받고 있으며(Islam et al., 2021; Han et al., 
2022), 수온, 수심 등의 물리적 요인과 음향 자료의 복합적 관
계를 반영하여 높은 예측력을 달성한 사례가 다수 보고되고 있
다. 본 연구에서도 변수 상호작용을 반영한 랜덤포레스트 모델
을 통해 남극은암치 성어의 분포를 높은 신뢰도로 재현할 수 있
었다.
본 연구 역시 기존 회귀 기반 예측과 달리, 변수 간 상호작용을 
반영한 모델링을 통해 성어의 분포를 높은 신뢰도로 재현해냈
으며, 최소한의 환경 변수만으로도 일정 수준 이상의 예측이 가
능함을 실증하였다. 그러나 치어와 같은 생물학적 변동성이 큰 
개체군의 예측 정확도 향상을 위해서는 추가적인 설명 변수 확
보가 필수적이다. 위성 기반 클로로필 농도, 해빙 농도, 플랑크
톤 밀도 등 1차 생산 및 먹이 생물 관련 지표의 보완이나, 해양
생물물리 모델과의 결합을 통해 미세 환경 특성을 반영하는 것
이 필요하다. 또한 gradient boosting, XGBoost, 딥러닝 기반 예
측 알고리즘 등과의 성능 비교를 통해 최적화된 예측 체계를 구
축할 수 있을 것이다
결론적으로, 본 연구는 남극 로스해 해역에서 수심, 수온, 염분
과 같은 주요 물리적 환경 변수가 남극은암치 성어의 NASC에 
미치는 기여도를 분석하고, 변수 간 상호작용을 반영한 랜덤포
레스트 기반 모델링이 강한 설명력을 가짐을 확인하였다. 이는 
제한된 물리 환경 정보만으로도 남극은암치 분포의 주요 변동
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성을 평가할 수 있음을 실증한 것으로, 극지 생물 모니터링 및 
생태계 관리에 유용한 기초 자료를 제공한다. 하지만 본 연구는 
주로 변수 중요도 분석과 모델 성능 평가에 초점을 두었으므로, 
향후 연구에서는 공간 예측 지도를 구축하거나, 위성 데이터·해
양 모형 등 외부 환경 자료를 추가로 통합하여 예측 범위를 확장
할 필요가 있다. 더불어 치어와 같이 생물학적 변동성이 큰 개체
군에 대해서는 클로로필 농도, 해빙 농도, 플랑크톤 분포 등 정
량적 생태 지표를 추가하여 생물·환경 복합 모델링을 강화하거
나 XGBoost, 딥러닝 등 다양한 기계학습 알고리즘과의 비교를 
통해 최적화된 예측 체계를 마련할 수 있을 것이다.
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